宇宙中的大型磁场
太阳磁场
太阳普遍磁场指日面宁静区的微弱磁场,强度约1×10-4~3×10-4特斯拉,它在太阳南北两极区极性相反,近年的观测发现,通过光球的大多数磁通量管被集中在太阳表面称作磁元的区域,其半径为100~300千米,场强为0.1~0.2特斯拉,大多数磁元出现在米粒和超米粒边界及活动区内。如果把太阳当做一颗恒星,可测到它的整体磁场约3×10-5特斯拉,这个磁场是东西反向的。
基本信息
太阳磁场solar magnetic field
太阳的绝大部分物质是高温等离子体,太阳的物态、运动和演变都与磁场密切相关。太阳黑子、耀斑、日珥等活动现象,更是直接受磁场支配。因此,太阳磁场的研究具有重要意义。
太阳磁场的定义
分布于太阳和行星际空间的磁场。分大尺度结构和小尺度结构。前者主要指太阳普遍磁场和整体磁场,它们是单极性的,后者则主要集中在太阳活动区附近,且绝大多数是双极磁场。
在太阳风作用下,太阳磁场还弥漫整个行星际空间,形成行星际磁场。它的极性与太阳整体磁场一致,随着离开太阳的距离增加而减弱。各种太阳活动现象都与磁场密切相关:耀斑产生前后,附近活动区磁场有剧烈变化(如磁场湮灭);黑子的磁场最强,小黑子约0.1特斯拉,大黑子可达0.3~0.4特斯拉甚至更高。谱斑的磁场约0.02特斯拉。日珥的形成和演化也受磁场的支配。
太阳活动区磁场
太阳黑子磁场
一般说来,一个黑子群中有两个主要黑子,它们的磁极性相反。如果前导黑子是N极的,则后随黑子就是S极的。在同一半球(例如北半球),各黑子群的磁极性分布状况是相同的;而在另一半球(南半球)情况则与此相反。在一个太阳活动周期(约11年)结束、另一个周期开始时,上述磁极性分布便全部颠倒过来。因此,每隔22年黑子磁场的极性分布经历一个循环,称为一个磁周。强磁场是太阳黑子最基本的特征。黑子的低温、物质运动和结构模型都与磁场息息相关。
耀斑与磁场的关系
耀斑是最强烈的太阳活动现象。一次大耀斑爆发可以释放1030~1033尔格的能量,这个能量可能来自磁场。在活动区内一个强度为几百高斯的磁场一旦湮没,它所蕴藏的磁能便全部释放出来,足够供给一次大耀斑爆发。在耀斑爆发前后,附近活动区的磁场往往有剧烈的变化。本来是结构复杂的磁场,在耀斑发生后就变得比较简单了。这就是耀斑爆发的磁场湮没理论的证据。
日珥的磁场
日珥的温度约为一万度,它却能长期存在于温度高达一、两百万度的日冕中,既不迅速瓦解,也不下坠到太阳表面,这主要是靠磁力线的隔热和支撑作用。宁静日珥的磁场强度约为10高斯,磁力线基本上与太阳表面平行;活动日珥的磁场强一些,可达200高斯,磁场结构较为复杂。
太阳普遍磁场
除太阳活动区外,日面宁静区也有微弱的磁场。整个说来,太阳和地球相似,也有一个普遍磁场。不过由于局部活动区磁场的干扰,太阳普遍磁场只是在两极区域比较显著,而不象地球磁场那样完整。太阳极区的磁场强度只有1~2高斯。太阳普遍磁场的强度经常变化,甚至极性会突然转换。这种情况在1957~1958年和1971~1972年曾两次观测到。
太阳整体磁场
如果把太阳当作一颗恒星,让不成像的太阳光束射进磁像仪,就可测出日面各处混合而成的整体磁场。这种磁场的强度呈现出有规则的变化,极性由正变负,又由负变正。大致来说,在每个太阳自转周(约27天)内变化两次。对这个现象很容易作这样的解释:日面上有东西对峙的极性相反的大片磁区,随着太阳由东向西自转,科学家们就可以交替地观察到正和负的整体磁场。总之,太阳上既有普遍磁场,又有整体磁场。前者是南北相反的,后者是东西对峙的。
太阳系磁场结构
太阳磁场的精细结构
近年来通过高分辨率的观测表明,太阳磁场有很复杂的精细结构。就活动区来说,在同一个黑子范围内各处磁场强度往往相差悬殊;并且在一个就整体说来是某一极性(例如N极)的黑子里,常含有另一极性(S极)的小磁结点。因此,严格说来,单极黑子并不存在。在横向磁场图上,不仅各处强度不同,方位角也不一样。在黑子半影中,较亮条纹与它们之间的较暗区域的磁场也有明显的差异。在活动区中,磁结点的直径约为1,000公里,磁场强度为1,000~2,000高斯。黑子磁场的自然衰减时间是很长的。
在日面宁静区,过去认为只有微弱的磁场,其强度约为1~10高斯。可是新的观测表明,宁静区的磁场的强度同样是很不均匀的,也含有许多磁结点。它们在日面上所占面积很小,却含有日面宁静区绝大部分的磁通量。具体说来,宁静区磁结点的范围还不到200公里,而它们含的磁通量竟占整个宁静区的90%左右。由于磁通量集中,磁结点的磁场强度可达上千高斯,远远超过宁静区大范围的平均磁场强度。
行星际磁场的扇形结构
在磁场“冻结”的情况下,太阳风的粒子带着磁力线跑,于是太阳磁场便弥漫于整个太阳系空间。因为太阳在自转,太阳风所携带的磁力线就不是直线,而是螺旋线。此外,日面上有整体磁场,相邻磁区的极性是相反的。这些因素同时起作用,形成行星际磁场的扇形结构。它和太阳整体磁场密切相关,它们的极性几乎完全一致。太阳整体磁场的极性一旦转换,行星际磁场的极性立即跟着转换。
随着太阳磁场向外扩张,它的强度也就越来越弱。在地球外围空间,磁场强度还不到万分之一高斯。然而由于行星际空间的气体极为稀薄,这样弱的磁场也能对物质运动产生支配作用。在太阳风的作用下,地磁场被压缩在地球磁层的范围内,不能向外延伸。
目前对太阳磁场测量只限于太阳大气。至于太阳内部磁场,还不能直接测量,只能用理论方法作粗略的估计。有人认为它可能比大气的磁场强得多。 |